CShhH7:
Basic TCP Mechanisms

Christos Papadopoulos

Introduction to TCP

« Communication abstraction:
— Reliable
— Ordered
— Point-to-point
— Byte-stream

* Protocol implemented entirely at the ends
— Assumes unreliable, non-sequenced delivery
— Fate sharing

* Operations

— OPEN/LISTEN, CONNECT, SEND, RECEIVE,
ABORT

TCP Reliability Mechanism

Sender Receiver

Flags:

SYN
FIN
RESET
PUSH
URG
ACK

TCP Header

Source port

Destination port

Sequence number

Acknowledgement
Hdrlen | o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

TCP Mechanisms

Connection establishment
Sequence number selection
Connection tear-down
Round-trip estimation

Window flow control

Connection Establishment

A and B must agree on initial sequence number selection:
Use 3-way handshake

A B A B
Aseqn SYN
SYN+ACK-A
Bse
ACK-B
ACK

Conne

Pommmmmmms T b, active OPEN
| CLOSED | N mmmm e
Pommmmmmms PR b, h, create TCH
| “ ! Y snd BYN
passive OPEN | | CLOSE b, N,
———————————— I | —————————= H Y,
create TCE | | delete TCE b, b,
W I Y, Y,
Ppommm———— o CLOSE | Y
| LISTEWN | @ —————————— | |
e ———————— + delete TCE | |
row SYN | | 2 END | |
——————————— I I B — I W
—————— + snd SYN,ACE /S h, snd S¥N Py
| < —mm e — === > | I
SYN | Fow BYHN | SYN |
ROVD | Qmmmmm e o | SENT |
| snd ACK | |
|------- - mT T T T | |
—————— + rov ACKE of BY¥YN & { row BYN, ACE Ppommmmmmm=dp
______________ | | ——— e ———
X | | snd ACE
W W
CLOSE o +
——————— | ESTAE |
snd FIN Ppemmmmmmme +

ction Setup

Sequence Number Selection

* Initial sequence number (ISN) selection
— Why not simply chose 0?
— Must avoid overlap with earlier incarnation
* Possible solutions
— Assume non-volatile memory
— Clock-based solutions

* Requirements for ISN selection

— Must operate correctly
e Without synchronized clocks
 Despite node failures

ISN and Quiet Time

* Assume upper bound on segment lifetime
(MSL)
— In TCP, this 1s 2 minutes

» Upon startup, cannot assign sequence
numbers for MSL seconds
 Can still have sequence number overlap

— If sequence number space not large enough for
high-bandwidth connections

Connection Tear-down

 Normal termination
— Allow unilateral close

— Avoid sequence number overlap

* TCP must continue to receive data even
after closing
— Cannot close connection immediately: what if a

new connection restarts and uses same
sequence number?

Tear-down Packet Exchange

Sender Receiver
FIN
FIN-ACK _ - --=7"
:;/ Data write
_________________________________ Data ack
FIN
FIN-ACK ™

Connection Tear-down

| CLOSE
| _______
| snd FIN
| CLOSE
"i“.i" _______
pemmmmm——— ¥ snd FIN
| FIN | G
| WAIT-1 | ==
+———————— + row FIN
| rov ACKE of FIN @ @———————
| ————————————— snd ACE
W hid
+——————— +
|FINWAIT-2 |
+——————— +
| row ACE o
| row FIN -
|ttt H
Y osnd ACK

- +
| EZTAR |
Fm———————— +
| | row FIN
| | =
£ b, snd ACE R +
——————————————————— = CLOSE |
= | WaIT |
M - +
| CLOSE |
r mmmm——— |
W snd FIN WV
- + +—— +
| CLOSING | | LAST-ACK |
- + - +
f FIN | rov ACE of FIN |
————— | Timecut=2M3L -————————————— |
Vo —————— X v
Pommmm—mme= +delete TCB = +
> |TIME WAIT|-————————————————~— =| CLOSED |
- + +—— +

Detecting Half-open
Connections

TCE A TCE B
[CEASH) (gend 300,receive 100)
CLOSED ESTABLISHED
SYN—SENT ——> <3EQ=400><CTL=3YN> ——> [(?7])

it <—— <SEQ=300><ACK=100><CTL=ACK> <—— ESTAEBLISHED
SYN-SENT ——> <S5EQ=100><CTL=R3T> ——> [(Zbort!!)
SY¥YN-SENT CLOSED

SYN-SENT ——> <SEQ=400><CTL=SYN> —

TIME-WAIT Assassination

TCE A TCE E
1. EEZTAELTISHED EETAELTISHED
(Cloze)

2. FIN-WATIT-1 ——> <3EQ=100><ACK=300-<CTL=FIN,ACK> ——> CLOSE-WAIT
3. FIN-WATIT-2 <«<—— «<SEQ=300><ACK=101><CTL=ACK:> <—— CLOSE—WL&IT

(Cloze)
4. TIME-WAIT <—— <SEQ=300><ACK=101><CTL=FIN,ACK> <—— LAST-ACK

5., TIME-WAIT ——> <8EQ=101><ACK=301><CTL=ACEK:> ——> CLOSED
.1, TIME-—WAIT <—— <3EQ=25b><ACK=33> ... old duplicate

H.2 TIME-WAIT ——> <SEQ=101><ACK=301><CTL=ACK> ——= 7?7?77
L.3 CLOSED <—— <SEQ=301><CTL=REST:> <—— PPTT

(prematurely)

Round-trip Time Estimation

* Wait at least one RTT before retransmitting

» Importance of accurate RTT estimators:

— Low RTT -> unneeded retransmissions
— High RTT -> poor throughput

 RTT estimator must adapt to change in RTT

— But not too fast, or too slow!

Initial Round-trip Estimator

Round trip times exponentially averaged:

« New RTT =a (0old RTT) + (1 - a) (new sample)
 Recommended value for a: 0.8 - 0.9

* Retransmit timer set to 3*RTT, where 3 =2

* Every time timer expires, RTO exponentially
backed-off

Retransmission Ambiguity

B

A

B Orio: .

A riginal transmissjon
Origina] transmissjon I RTO

S ample Letr, aHSmission RTT

RTT

Karn's Retransmission Timeout
Estimator

* Accounts for retransmission ambiguity

 If a segment has been retransmitted:

— Don’t count RTT sample on ACKs for this
segment

— Keep backed off time-out for next packet

— Reuse RTT estimate only after one successful
transmission

Jacobson's Retransmission
Timeout Estimator

» Key observation:
— Using *RTT for timeout doesn’t work
— At high loads round trip variance is high

e Solution:

— If D denotes mean variation
— Timeout = RTT + 4D

Flow Control

* Problem: Fast sender can overrun receiver
— Packet loss, unnecessary retransmissions

* Possible solutions:
— Sender transmits at pre-negotiated rate

— Sender limited to a window’s worth of
unacknowledged data

* Flow control different from congestion
control

Window Flow Control: Send

window

Sequence numbers

T

Next to be sent i

Window Flow Control: Receive

Receive buffer

. Sequence numbers

Gap” ' window

Window Advancement Issues

* Advancing a full window

— When the receive window fills up, how do things get
started again?

— Sender sends periodic probe while receive win 1s 0
 Silly window syndrome
— Fast sender, slow receiver
— Delayed acks at receiver help, but not a full solution
» The small packet problem and Nagle’s algorithm
— If window < IMSS when do I send?

— Delay sending if un-acked data in flight
— Overwrite with TCP-NODELAY option

TCP Extensions

* Needed for high-bandwidth delay connections
— Accurate round-trip time estimation
— Window size limitations

— Impact of loss
* Implemented using TCP options
— Timestamp

— Protection from sequence number wraparound

— Large windows

Timestamp Extension

» Used to improve timeout mechanism by
more accurate measurement of RTT

* When sending a packet, insert current
timestamp 1nto option

* Recerver echoes timestamp in ACK

Protection From Wraparound

* Wraparound time vs. Link speed:
* 1.5Mbps: 6.4 hours
* 10Mbps: 57 minutes
* 45Mbps: 13 minutes
* 100Mbps: 6 minutes
* 622Mbps: 55 seconds
* 1.2Gbps: 28 seconds

» Use timestamp to distinguish sequence
number wraparound

Large Windows

» Apply scaling factor to advertised window

— Specifies how many bits window must be
shifted to the left

» Scaling factor exchanged during connection
setup

TCP Congestion Control

Congestion

1.5 Mbps .

100 Mbps

* (Caused by fast links feeding into slow link
« Severe congestion may lead to network collapse

— Flows send full windows, but progress is very slow
— Most packets in the network are retransmissions
» Other causes of congestion collapse

— Retransmissions of large packets after loss of a single fragment

— Non-feedback controlled sources

Congestion Control and
Avoidance

* Requirements
— Uses network resources efficiently
— Preserves fair network resource allocation

— Prevents or avoids collapse

* Congestion collapse 1s not just a theory

— Has been frequently observed in many
networks

Congestion Response

throughput delay

loa(i load

Criteria

« Efficiency:

— System 1s most efficient at knee of throughput curve
* Most throughput without excessive delay

— One proposed efficiency metric: Power
(throughput“/delay), where 0<=a<=1
» Fairness:

— In the absence of knowing requirements, assume a fair
allocation means equal allocation

— Fairness index: (Zx;)*/n(Zx?)

— Index ranges between 0..1 with 1 being fair to all flows

Congestion Control Design

* Avoidance or control?
— Avoidance keeps system at knee of curve
— But, to do that, need routers to send accurate signals
(some feedback)
* Sending host must adjust amount of data 1t puts in
the network based on detected congestion
— TCP uses 1ts window to do this

— But what’s the right strategy to increase/decrease
window

Feedback Control Model

* We study this question using a feedback control
model:
— Reduce window when congestion 1s perceived

— Increase window otherwise

 (Constraints:
— Efficiency
— Fairness

— Stability or convergence (the system must not oscillate
significantly)

Linear Control
Xi(t+ 1) =a; + b; Xi(t)

* Formulation allows for the feedback signal:

— to be increased/decreased additively (by
changing a.)

— to be increased/decreased multiplicatively (by
changing b,)

* Which of the four combinations 1s optimal?

TCP Congestion Control

* A collection of interrelated mechanisms:
— Slow start
— Congestion avoidance
— Accurate retransmission timeout estimation
— Fast retransmit

— Fast recovery

Congestion Control

* Underlying design principle: Packet
Conservation

— At equilibrium, 1nject packet into network only
when one 1s removed

— Basis for stability of physical systems

TCP Congestion Control Basics

« Keep a congestion window, cwnd

— Denotes how much network 1s able to absorb

e Sender’s maximum window:

— Min (advertised window, cwnd)

e Sender’s actual window:

— Max window - unacknowledged segments

Clocking Packets

* Suppose we have large actual window. How
do we send data?

— In one shot? No, this violates the packet
conservation principle

— Solution: use acks to clock sending new data

— Ack reception means at least one packet was
removed from the network

sender

TCP is Self-clocking

receiver

Slow Start

* But how do we get this clocking behavior to
start?

— Initialize cwnd = 1

— Upon receipt of every ack, cwnd = cwnd + 1
* Implications

— Window doubles on every RTT

— Can overshoot window and cause packet loss

OR

IR

2R

3R

Slow Start Example

one RTT

8]

one pkt time

Th

)
>

B
BB
S

Slow Start Sequence Plot

Data (KB)

0.3000 —
0.2500 —
0.2000 —
0.1500 —
0.1000 —
0.0500 —
0.0000 —

00500 !

0.0000

onm

Slow start

gl

EmNEn
ngﬁmmg -'..-.l..-ll

DopENEm

[l | |

1.0000 2.0000
time

Jacobson, Figure 3: No Slow
Start

Figure 3: Startup behavior of TCP without Slow-start

2
g -
, : i i
5 ;! 5 \
g .!"\ i\ /
= i
8 i
: j
T8 H
b i /
E b | by
K
& B
i
° H
i
o | | | |
0 2 4 & B 10

Send Time (sec)

Jacobson, Figure 4: with Slow
Start

Figure 4: Startup behavior of TCP with Slow-start

AN

ih]
|
,

Packet Sequence Number (KB}
40

|
"I.\\

I
.

Congestion Avoidance

* Coarse grained timeout as loss indicator

* Suppose loss occurs when cwnd = W
— Network can absorb 0.5W ~ W segments

— Conservatively set cwnd to 0.5W (multiplicative
decrease)

— Avoid exponential queue buildup
* Upon receiving ACK
— Increase cwnd by 1/cwnd (additive increase)

— Multiplicative increase -> non-convergence

Slow Start and Congestion
Avoidance

 If packet 1s lost we lose our self clocking as
well — timeout has caused link to go quiet

— Need to implement slow-start and congestion
avoldance together

— New variable: ssthresh (slow-start threshold)
e When timeout occurs set ssthresh to 0.5W

— If cwnd < ssthresh, use slow start
— Else use congestion avoidance

Congestion Avoidance Sequence
Plot

- I3
= o
L] a
= O
" G

@i
Where 1s the transition
From SS to CA? ® i

Congestion Window Variation

Congestion
window

Jacobson, Figure 8: 4x no
Congestion avoidance

Figure 8: Multiple, simultaneous TCPs with no congestion avoidance

Sequence Number (KB)
400 600 800 1000 1200

200

0 50 100 150 200
Time (sec)

Jacobson, Figure 9: 4 TCPs with
Congestion Avoidance

Figure 9: Multiple, simultaneous TCPs with congestion avoidance
2

Seguence Mumber (KB)
B0

Impact of Timeouts

 Timeouts can cause sender to
— Slow start
— Retransmit a possibly large portion of the window

* Bad for lossy high bandwidth-delay paths

* Can leverage duplicate acks to:
— Retransmit fewer segments (fast retransmit)

— Advance cwnd more aggressively (fast recovery)

Fast Retransmit

* When can duplicate acks occur?
— Loss
— Packet re-ordering

* Assume packet re-ordering 1s infrequent

— Use receipt of 3 or more duplicate acks as indication of
loss

— Retransmit that segment before timeout

— Value of 3 was a guess initially, but later validated
through experiments by Paxson

Packet Number (Mod 60)

Fast Retransmit Example

B0

50

40

30

20

10

Tahoe TCP ;r
[Fall96a] figure 2]

£

a
. depart from Q _'
arrive in rquter Q .

s
Iy
i f fast retransmit
"o | =| after 3 dup ACKs
: i}' Ift D
¥
i EI é

fast retx helps a lot,
but not always (if no dup ACKs)

Fast Retransmit - 1 Drop

window

1

2

15

seqnum

0

1-2

3-6

7-14

15-28

14

29-30

Actions after dupacks for pkt 13:

1. On 3rd dupack 13 enter fast rtx

2. Set ssthresh = 15/2=7

3. Set cwnd = 1, retransmit 14

4. Receiver cached 15-28, acks 28

5. cwnd++ continue with slow start

6. At pkt 35 enter congestion avoidance

Fast Recovery

* In congestion avoidance mode, 1f three
duplicate acks are received we reduce cwnd

to half

* But if n successive duplicate acks are
received, we know that receiver got n
segments after lost segment

— Allowed to advance cwnd by that number
— Does not violate packet conservation

Fast Retransmit and Recovery

« If we get 3 duplicate acks for segment N

— Retransmit segment N
— Set ssthresh to 0.5*cwnd
— Set cwnd to ssthresh + 3

* For every subsequent duplicate ack

— Increase cwnd by 1 segment

e When new ack received

— Reset cwnd to ssthresh (resume congestion avoidance)

Fast Recovery Example
fast recovery
due to add 1l 3
dup ACKs :

~—=_ fast retransmit
aﬁer 3 dup ACKS

=

o=
=
=
=

o>

QQEQQE .Illll

mﬂﬁﬂﬂm@ llIIIllIIIIIII

nmﬂm.lllllll

onn
Al LT

2.0000 >Q

1 .O0O0O)

Fast Recovery - 1 Drop

window seqnum

\

3 % - .
% 7-14 Actions after dupacks for pkt 13:
o AT 1. On 3rd dupack 13 enter fast recovery
S ¢ 3 !

15 % 2. Set ssthresh = cwnd = 15/2 =7
— 5% 3 etransmit 14

4. Receipt of 3rd dupack sets W=11

3 5. By 13th dupack, W = 21, send 29-34
% 934 0. After ack 28, exit fast recovery

7[ack28 7. Set cwnd =7

7. Continue with congestion avoidance

TCP Flavors

 Tahoe, Reno, New-Reno, SACK
* TCP Tahoe (distributed with 4.3BSD Unix)

— Original implementation of van Jacobson’s
mechanisms (VJ paper)

— Includes:
 Slow start (exponential increase of initial window)

« Congestion avoidance (additive increase of window)

* Fast retransmit (3 duplicate acks)

TCP Reno

 1990: includes:

— All mechanisms in Tahoe

— Addition of fast-recovery (opening up window
after fast retransmit)

— Delayed acks (to avoid silly window syndrome)

— Header prediction (to improve performance)

* Most widely deployed variant

TCP New-Reno

* In Reno’s fast recovery, multiple packet
drops within window can cause window to
deflate prematurely

e In New-Reno

— Remember outstanding packets at start of fast
recovery

— If new ack 1s only a partial ACK, assume
following segment was lost and resend, don’t
exit fast recovery

30 40 50 60

Packet Number (Mod 60)
20

10

New-Reno Example

i New-Reno TCP

fast recovery

due to add tl
dup ACKsy .
-

¢ additional fast retx
and recovery from

— New Reno

fast retransmit
after 3 dup ACKs

TCP Sack

* Reno suffers timeouts with more than 2 losses per
window

* New-Reno avoids that, but can only re-send one
dropped packet per RTT

— Because 1t can learn of multiple losses only once per
RTT

« TCP SACK
— Implements the SACK option in TCP

— Can transmit more than one dropped packet because the
sender now knows which packet was dropped

— Sends dropped packets in preference to new data

Other Issues in High BW -
Delay Networks

e Slow start too slow

— Takes several RTTs to open window to proper
S1Z€

» Restart after long 1dle time
— May dump large burst in the network

Connection Hijacking

 Problem:

— some systems authenticate based on TCP
connections

— 1f you can steal a running TCP connection,
you’re in

— 1t is possible, but not easy

Other Performance Issues

Misbehaving TCP implementations
* Misbehaving Sender:

— Ignore slow start

« Misbehaving Receiver (Savage, 1999)
— ACK division: open up congestion window faster

— DupACK spoofing: send multiple dup acks to inflate
window

— Optimistic Acking: send acks for packets you didn’t
receive yet — emulates shorter RTT

* Above problems are implementation dependent

SYN Attacks

 Problem:

— Easy to take over computers (zombies) and stage SYN
attacks

—Overflows listen queue, wastes kernel resources (TCB)

« Mitigation: SYN cookies

 rather than make a new TCB for a new (probably

bogus) connection, encode the info 1n the ISN on the
SYN-ACK

* when you get the ACK, recreate the missing state

